NUS Nanoscience & Nanotechno Initiative (NUSNNI)

Microwave Sintering Technique for Size Scale-up or uye-sensitized solar cells

Speaker:	Dr Satoshi Uchida , Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan		
Venue:			
Date:	22 nd June 2006 (Thursday)	146	
Time:	2.30pm – 5.00pm (There will be a 15 mins break at 3.30pm, and the seminar will resume at 3.45pm. Question time is last 30 minutes.)		

Abstract:

A new type of solar cell based on dye-sensitized nanocrystalline titanium dioxide (DSSC) has been developed by M. Graetzel et al. Remarkably high quantum efficiency in combination with the expected ease and low cost of manufacturing makes this new technology interesting as an alternative to existent solar cell technologies. Various elemental technologies of dye-sensitized solar cells have therefore been researched, including the sensitized dye, semiconductor particles, electrolyte, electron transfer process and photovoltaic mechanism. In spite of these vigorous studies, the assembling of flexible TiO_2/dye solar cell is still under investigation. Flexible electrodes, like polyethylene terephthalate sheet coated with tin-doped indium oxide (PET-ITO), present lower costs and technological advantages relative to conductive glass electrodes, e.g. lower weight, impact resistance and less form and shape limitations. However, deposition of nano particulate TiO_2 on PET-ITO is difficult, because the thermal treatment must be limited to $150C^0$ or so. It decreases adhesion strength, electrical contact of TiO_2 particles and adsorption of the dye. Here in this work, a microwave irradiation process is proposed for selective heating the nanocrystalline titanium oxide films of DSSC.

Biography: http://kuroppe.tagen.tohoku.ac.jp/~uchida/profile-e.html

Affiliated Organization

Address: 1.1 Katahira 2-Chome, Aoba-Ku, Sendai, 980-8577, Japan Phone: +81-22-217-5599 Fax: +81-22-217-5599, E-mail <u>uchida@tagen.tohoku.ac.jp</u> Organization Name: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Belonging Post: Division of Materials Design, Official Position Name: Research Associate

<u>Academic Background</u>

1988.3 B.Eng: Faculty of Engineering, Chemistry, Tohoku University 1995.2 Dr.Eng: Graduate School of Engineering, Applied Chemistry, Tohoku University

Thesis Title "Study of Ni, Cu, Zn, Sn Leaching from Metal Scrap by Hot Aqueous Solution"

1991.4	Research Institute of Mineral Dressing and	Research	Extraction and Leaching of Metals
	Metallurgy (SENKEN), Tohoku University	Associate	from Ore by Hydrothermal Process
1994.4	Institute for Advanced Materials Processing	Research	Hydrothermal Synthesis of Various
	(IAMP), Tohoku University	Associate	Metal Oxides
1996.4	Institute for Chemical Reaction Science (ICRS),	Research	Hydrothermal Synthesis of TiO ₂ and
	Tohoku University	Associate	their Photochemistry
2001.4	Institute of Multidisciplinary Research for	Research	Synthesis of Nano Crystalline TiO ₂ and
	Advanced Materials (IMRAM), Tohoku	Associate	their Application for Dye-Sensitized
	University		Solar Cells

Research and Business Career