2008 Solar Annual Review Meeting

Session: Organic Photovoltaics Company: Konarka Funding Opportunity: \$3.6M (DOE) \$8.7M (total)

Jeremiah Mwaura (jmwaura@konarka.com) Presenter's Name, Contact Information

Budget and Solar America Initiative Alignment

Konarka Technologies

Project Start Date	FY07 Budget	FY08 Budget	Total Proj Budget
June 1, 2007(calendar)	\$1.3M	\$2.9M	\$8.6M
June 1, 2007(12 months)	\$2.7M	\$3.0M	\$8.6M

This project supports the Solar America Initiative by:

- Grid parity by 2015
- 7% module efficiency (2010)
- 10 year Life (2010)

This project does not support manufacturing of solar modules

SAI – Konarka Program Objectives

Objectives/Approaches/Tasks

1] Stability

Objective: lower water vapor transmission rate

Approaches:

- adhesives for over laminate with plate-like fillers
- adhesives for perimeter with rod-like fillers

Tasks:

- Develop procedures for suspending fillers in adhesives

Partners:

- -NREL (Rod-like Fillers)
- University of Delaware (Stability)

2] Performance

Objective: improve cell efficiency by increasing absorptivity of electron carrier

Approaches:

- develop n-type polymers (high absorptivity)
- develop n-type small molecules (high absorptivity)

Tasks:

- synthesis

Partner:

- NREL, Measurements and Characterization Division
- 3] Performance

Objective: improve cell efficiency by replacing TCO

Approach:

- metal grids

Tasks:

- develop silver printing ink formulations
- print grids using screen, gravure or inkjet printing

Stability

Current Stability on glass:

<5% degradation in performance at 1000 hours testing with various conditions of temperature and humidity:

1.3 suns, 40°C, 500 hours (efficiency changes <5 %) 85°C, 1 sun 500 hours (efficiency changes <5%) 65°C/90% humidity, 1000 hours (efficiency changes <5%) 85°C, dry atmosphere, 1000 hours (efficiency changes <5%)

TEMs of Cloisite Clay in Butvar

WVTR of 70% clay is 4x improved over Butvar control

70% wt Clay C / Butvar

Boehmite Fibers

SEM data of Boehmite in DYMAX films

1-butanol coated Al(O)OH : 0.5 g DYMAX : 1 0 g UV cured (RAYONET) between cover glass slides (20 min)

Element map shows uniform distribution of AI across the sample

Performance – N-type

2] Performance

Objective: improve cell efficiency by increasing absorptivity of electron carrier

Approaches:

- develop n-type polymers (high absorptivity)
- develop n-type small molecules (high absorptivity)

Where X and M are a very strong electron acceptors

New Fullerene Derivatives

Sample	V _{oc} (V)	I _{SC} (mA)	FF	Efficiency (%)	LUMO (eV) (CV solution)
P3HT/PCBM	0.62	-11.17	0.67	4.7	-3.70
P3HT/#16	0.63	-11.80	0.51	3.82*	-3.70
#15	-	-	-	-	-3.53
#19	-	-	-	-	-3.32

*un-optimized

Printed Grid in Development

Grid printed with silver ink 88% open, 232um wide lines Conductivity = 2.6×10^4 S/cm (bulk silver conductivity = 6×10^5 S/cm)

Ideal grid structure - lithographic technique

Project Alignment with Technology Roadmap

<u>Need</u>

Efficiency: 10% cell by 2010 10% module by 2015 Stability <u>></u>20 year life (2015)

High Yield Manufacturing

Significance Energy cost on par with electric grid (2015)

Anticipated Production >>3MW by 2010

Project Update

Objectives/Tasks

1] Stability

Objective: lower water vapor transmission rate

- Tasks:
 - Develop procedures for suspending plate-like and rod-like fillers in adhesives
- Future: a] continue to explore new adhesives
 - b] simultaneously test existing materials and optimize processes
 - c] make and test adhesives with commercial barrier films in modules

2] Performance

Objective: improve cell efficiency by increasing absorptivity of electron carrier Tasks:

- synthesis of n-type polymers
- synthesis of n-type small molecules with higher absorptivity

Future: a] continue to pursue new fullerene derivatives for improved cell voltage b] optimize performance in cells and modules

3] Performance

Objective: improve cell efficiency by replacing TCO Tasks:

- develop silver printing ink formulations
- print grids using screen, gravure or inkjet printing

Future: continue to pursue silver ink formulations with higher conductivity

<u>Status</u>

- Procedure developed (March, '08)
- WVTR testing underway (current)

- Stop work (April, '08)

- Redirect to voltage (Jan. '08)
- Accelerate effort (current)
- Current
- Current

- Work proceeding
- Screen printing demonstrated
- Current

Obstacles Discussion

<u>Task 1</u> - Fillers

- Barrier encountered : procedure for dispersing nano-particulates of clay in adhesive binder Probably solved

Task 2 - n-Type materials

a] n-Type polymer:

Barrier encountered: synthesis of monomer comprising strong electron accepting groups Stopped work April after 9 months (down select scheduled for July, '08).

b] n-Type small molecules:

Barrier encountered: increase in absorptivity

Developing small molecules with increased Voc

Task 3 - Grids

 Barrier encountered: silver formulations with good conductivity and proper rheology for screen printing screens with small features to reduce the size of the metal lines to <100 um

