

ModuLab[®] DSSC

Photoelectrochemical Measurement Sytem

Dye Sensitized Solar Cells Visible Spectrum - Photoelectrochemistry Visible Spectrum Semiconductor Photocatalysis

moduLabxm

AMETEK

WELEK

solartron

ModuLab[®] DSSC is a fully integrated photoelectrochemical measurement system designed for the characterization of Dye Sensitized Solar Cells. Additionally, the system can be used for development of visible spectrum photoelectrochemical systems such as Iron- Oxide mediated photo-splitting of water.

A comprehensive suite of techniques, developed by the leaders in this field for over 20 years are available. Solartron Analytical recognized that many users are unfamiliar to many of these techniques and therefore, at the heart of the product concept is the ability to analyze much of the data at one click of the mouse! No previous knowledge of frequency domain technique required. For the experienced user, the ModuLab offers the ability to build and develop new experiment types with the powerful step sequencer. The highlights of the system include:

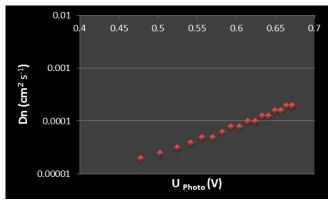
- Range of Frequency and Time Domain Measurements techniques including IMPS, IMVS, Impedance, PhotoVoltage Decay, Charge Extraction Techniques, I-V
- 'Auto' analysis of data enabled for calculation of effective Diffusion coefficients and Electron Lifetimes at one click of a button. Suitable for users new to Frequency Domain Techniques
- NIST traceable Light Source calibration routine
- Excellent thermal management of light sources for long term stability
- Wide range of Monochromatic high brightness LED's available
- Full suite of Electrochemical Techniques including Cyclic Voltmmetry, Chrono - Methods, Galvano methods and comprehensive list of Impedance and AC Voltammetry Methods
- Auxiliary Channel Measurements for simultaneous determination of anode and cathode impedance and voltages
- Solartron Analytical FRA technology inside including single, swept and Multi-sine techniques

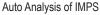
Comprehensive Techniques Package

A dedicated suite of software specifically developed for testing photo-electrochemical devices is included:

- Intensity Modulated Photocurrent Spectroscopy (IMPS)
- Intensity Modulated Photovoltage Spectroscopy (IMVS)
- Impedance Spectroscopy
- I-V
- Charge Extraction Methods
 - Short Circuit
 - Dark Charge Extraction
- Photo Voltage Decay

the **ModuLab DSSC**


Enhanced Productivity


With the ability to auto-sequence techniques, the full suite of measurement possibilities can be run at a click of the mouse. Unlike other systems, the ModuLab DSSC was designed to allow all measurements to be run in sequence without any interference from the end user. This greatly increases productivity and ease of use.

Auto - Analysis Detailed Analysis of DSSC's Has Never Been Easier

Data can be auto-analyzed with pre-programed algorithms. Data is presented in graphical format allowing researchers to quickly evaluate their samples and provide in-depth information that is unavailable with simple I-V curve analysis alone.

Technique	Parameters
IMPS	Effective Diffusion Coefficient of Electrons
IMVS	Effective Lifetime of Electrons
Photo Voltage Delay	Effective Lifetime of Electrons
I-V	Fill Factor, Pmax, Voc, Isc, Efficiency
Charge extraction - Dark	Trapped Charge Density
Charge extraction - Short Circuit	Trapped Charge Density

Other Techniques

The system is delivered with 4 AUX voltage measurement channels. These channels are included specifically to enable the measurement of the internal quasi Fermi level of the DSSC.

The system can also be configured to work with third party systems such as solar simulators and monochromators to extend measurement possibilities to:

- Full Sun I-V simulations
- IPCE measurements

Data Export to Third Party Analysis

Impedance data can be easily exported to third party EIS analysis packages such as ZView[™]. A comprehensive list of pre-defined elements are available including Bisquert elements for the analysis of the Impedance response of DSSC's

-200	FitResult	-				10 ³	Callera a San		
		E Equivale							
-		File Mod							
		20 🖬 🖓	, a aq	Bun Smulet	ton / Freq. Range	24-Squared = N/A Sum of Sqr = N/A			- 14
-150		DK.	u una						- 11
			3-w-	- Li					1
								and an	
-		Cenent	Freedom	Value	0mm	Dror%		10*	10
		DN3 DN3-R	X Fiel	11Boguert #2	NA	NA			
N-100 -		DK3-F	X Feel	2	NA	NA			
14.00		DATE	X Fiel	6	NA	NA			
		012-0	X Fuel	6	NA	NA			
-		DX3-A	X Feel	8	NA	NA		_	_
		013-8	X Feed	-	NA	NA			
		DK1-C	X Fixed	300	NA	NA			
-50 -		DX3-D	X Fixed	8.001	NA	NA			
		DX3-E	X Fixed	1	NA	NA			
1		DKS-P	X Fixed	1	N/A	NA			
		Wal-R	X Fixed	30	NA	NA			
		Wast .	X Fixed	8	NA	NA			
0		White	X Fixed	0.5	N/A	NA)	Designed	
0 50	0 100	150 81	X Fixed	2	N/A	NA		105	10
	Z	C1	X Fixed	100	N/A	NA			
	-	82	X Fixed	13	NA	NA			

Simulation and Fitting of EIS data in ZView™

Optical Bench

At the heart of the ModuLab DSSC is a collimated and highly focused, high power light source. Key features of this bench include:

- NIST Traceable Calibration of Light Sources
- High Light Intensity Measurements Excellent Thermal Stability
- Control and Measure up to 6 decades of Light Intensity
- Collimation and Focusing Optics
- Reference Detection Technique up to 100 kHz for Solid State Devices

NIST Traceable Results Packages

Each optical bench is equipped with a 10 MHz, fast Si Photodetector. The NIST traceable sensor inside each detector is supplied with an individual factory calibration file. End users can refer all measurements in units of power per unit area in confidence of the accuracy and repeatability of results.

Excellent Thermal Stability

The new ModuLab DSSC incorporates high stability, high power LED's which offer excellent thermal stability while eliminating the need for feedback control loops.

Other systems might experience poor temperature management of the LED's that can lead to significant output drift during the course of experiments and therefore may invalidate the results. Under such circumstances the system may have a limited range of output power or require additional, expensive feedback control electronics to regulate the output of the light source.

Control and Measure up to 6 Decades of Light Intensity

The fast Si Photodetector has seven gain stages which provide excellent measurement resolution for very low level intensity studies. The addition of a 0.01 Neutral Density filter extends the range of the measurement possibilities to over 6 decades of intensity.

A two stage collimation and focusing optical arrangement ensures high power beams with > 0.1 Sun equivalent intensity and excellent homogeneity. This impressive performance is achieved without having to alter the optical arrangement thus ensuring repeatability of measurements.

Reference Detection to Eliminate Phase and Magnitude Errors at High Drive Frequencies

The reference mode for transfer function techniques for photoelectrochemical systems such as IMPS and IMVS was first developed by Prof Laurie Peter in the late 1980's. The ModuLab DSSC bench incorporates this philosophy with the addition of a reference mode. A 50:50 Anti-Reflective Coated beam splitter directs an equal amount of light onto the sample and the reference detector. The response of the cell under test is directly compared with the response of the reference signal thus eliminating errors associated phase shift and changes in magnitude of light.

Not Just a PhotoElectrochemical System

The ModuLab DSSC utilizes the powerful ModuLab Frequency Response Analyzer and Potentiostat technology. Existing systems can be upgraded to ModuLab DSSC with an option card and optical bench.

A comprehensive suite of standard electrochemical techniques is included:

- Cyclic Voltammetry (Staircase and Linear Sweep)
- Potentiostatic Steps
- Normal and Differential Pulse Techniques
- Potentiostatic and Galvanostatic Impedance (Single Sine or Multi-Sine FFT)
- AC Voltammetry

The ability to control the optical bench for each of these techniques will allow researcher to develop more diagnostic techniques for DSSC's

For more details about the ModuLab Potentiostat and FRA technology please review the ModuLab brochure.

Specifications

Potentiostat	
Slots Taken	1
Cell Connections	2, 3 or 4 terminal
Instrument Connections	CE, WE, RE, Lo
Floating Measurements	yes
Impedance Measurement Bandwidth	1 MHz (via FRA)
Maximum ADC sample rate	1 MS/s
Smooth Scan Generator	64 MS/s interpolated and filtered
Maximum Time Record	Unlimited
DC Scan Rate (potentiostatic)	1.6 MV/s to 1 µV/s
DC Scan Rate (galvanostatic)	60 kA/s to 200 µA/s
Minimum Pulse Duration	1 µs
IR compensation	yes
Counter Electrode	
Voltage Polarization Range	±8 V (±100 V)*
Current Polarization Range	±300 mA (± 2 A)*
Maximum Compliance (Ce. vs Lo)	±8 V
Bandwidth (decade steps)	1 MHz to 10 Hz
Polarization V / I error (setting and range)	0.1% + 0.1%
Slew Rate	>10 V / µs
Reference Inputs (RE)	
Connections	Differential Input
Cable Shields	Driven / Ground
Maximum Voltage Measurements	±8V
Ranges	8 V to 3 mV
Accuracy (reading % + range% + offset)	0.1% + 0.05% + 100 μV
Maximum Resolution	1μV
Input Impedance	>100 GΩ, < 28 pF
Input Bias Current	<10 pA
Working Electrode (WE)	
Maximum Current	±300 mA
Ranges	300 mA to 30 nA
Accuracy (reading % +range % + offset)	0.1% + 0.05% + 30 fA
Maximum Resolution	1.5 pA
Compliance Voltage Range (floating)	±8 V
Auxiliary Electrodes (A, B, C, D)	
Connections	4 (each differential)
Specification	Same as RE above
	İ
DC Measurement	Synchronized to RE

Optics	
Wavelength Range	400 nm-700 nm
Intensity Range	6 decades (with ND filter)
Max Beam Divergence	4°
Max Beam Diameter / cell size	1 cm
IMPS / IMVS Transfer Function	Reference Photodetector
Calibration	NIST Traceable
LED Driver Max Current	2 A
Typical LED Stability at MAX power	< 2% drift after 24hrs
LED Driver Max Frequency (IMPS and IMVS)	100kHz
	÷

LED Options

LED Options (nm)	Max Power (mA)	Bandwidth (FWHM) (nm)
420	500	12
455	1000	18
470	1600	29
505	1000	30
530	1600	31
590	1600	14
625	1000	16
660	1200	25
Cold White	1000	n/a
Warm White	1000	n/a

Frequency Response Analyze	requency Response Analyzer				
Maximum Sample Rate	40 MS/s				
Frequency Range (1 MHz and 300 kHz options)	10 µHz to 1 MHz or 10 µHz to 300kHz				
Frequency Resolution	1 in 65,000,000				
Frequency Error	±100 ppm				
inimum Integration Time per meas- rement (single sine, FFT or Harmonic)	10 ms				

Signal Output	
Waveform	Single Sine, Multisine
Single Sine Sweep	Linear / Logarithmic
Multi-Sine	All Frequencies or Selected Frequencies
Analysis Channels	

Accuracy (ratio)	± 0.1%, ± 0.1°
Anti-alias and digital filters	Automatic
Analysis Channels	RE, WE, Aux A/B/C/D
Analysis Modes	Single Sine, FFT, Harmonic

Visit our website for a complete list of our global offices and authorized agents

solartron.info@ametek.com www.solartronanalytical.com

ł	not	compatible	with	Photoe	lectroc	hemical	card
---	-----	------------	------	--------	---------	---------	------

USA

801 South Illinois Avenue Oak Ridge TN, 37831-0895 USA

Tel: (865) 425-1289 Fax: (865) 481-2410

Europe

Unit 1 Armstrong Mall Southwood Business Park Farnborough Hampshire GU14 ONR UK

Tel: +44 (0) 1252 556800 Fax: +44 (0) 1252 556899