

Fatal contradiction of "lon migration" concept as an origin of hysteresis

Solid State Ionics 11 (1983) 203-211 North-Holland Publishing Company ments were curtailed because of melting of samples. The melting points thus found are 604 ± 3°C for CsPbCl₃, 500 ± 10°C for CsPbBr₃, and 491 ± 1°C

CsPbCl₃ for example

IONIC CONDUCTION OF THE PEROVSKITE-TYPE HALIDES

Junichiro MIZUSAKI, Kimiyasu ARAI and Kazuo FUEKI Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 21 June 1983

The ionic conduction in the perovskite-type halides, $CsPbCl_3$, $CsPbBr_3$ and $KMnCl_3$, we made of ac conductivity at temperatures from $150^{\circ}C$ to the melting point, and of ionic transport, EMF and ion-blocking methods. The effects of impurity doping on the ionic constudied using the samples of composition, $CsPb_{0.99}M_{0.01}Cl_{2.99}$ (M = Li, Na, K, Ag). It was are halide-ion conductors. The ionic conductivities of $CsPbCl_3$ and $CsPbBr_3$ are close to the conductors, $PbCl_2$ and $PbBr_2$. The ionic transport numbers were found to be >0.9 for $CsP_{0.99}$ for $KMnCl_3$. The conduction was considered to be caused by the migration of halide-interactivation energies for the migration of V_X were 0.29 eV for $CsPbCl_3$, 0.25 eV for CsP_3 . The vacancy diffusion coefficients of these materials were found to be very large. However increase the ionic conductivity markedly because of small dopant solubility.

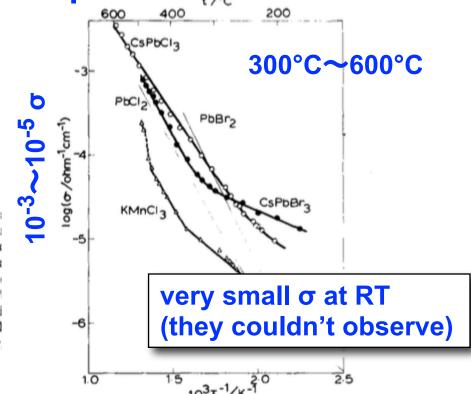


Fig. 3. Conductivity of perovskite-type halides. Conductivity of lead halides are also shown by thin lines.